目前是人工智能的时代,国内外像Google、微软、FaceBook、百度和华为等巨头公司纷纷投入较大的资源进行深度学习框架的研发和应用的拓展。表1列出了github上流行的深度学习框架的星数。
表1 github上流行的深度学习框架的星数
下面有侧重地介绍一下上表中列出的一些深度学习框架。
(一)TensorFlow
TensorFlow是用C++语言开发的,支持C、Java、Python等多种语言的调用,目前主流的方式通常会使用Python语言来驱动应用。这一特点也是其能够广受欢迎的原因。利用C++语言开发可以保证其运行效率,Python作为上层应用语言,可以为研究人员节省大量的开发时间。
TensorFlow相对于其他框架有如下特点。
1、灵活
TensorFlow与CNTK、MXNET、Theano同属于符号计算构架,允许用户在不需要使用低级语言(如在Caffe中)实现的情况下,开发出新的复杂层类型。基于图运算是其基本特点,通过图上的节点变量可以控制训练中各个环节的变量,尤其在需要对底层操作时,TensorFlow要比其他框架更容易。当然它也有缺点,灵活的操作会增加使用复杂度,从而在一定程度上增加了学习成本。
2、便捷、通用
作为主流的框架,TensorFlow生成的模型,具有便捷、通用的特点,可以满足更多使用者的需求。TensorFlow可以适用于Mac、Linux、Windows系统上开发。其编译好的模型几乎适用于当今所有的平台系统,并提满足“开箱即用”的模型使用理念,使模型应用起来更简单。
3、成熟
由于TensorFlow被使用的情况最多,所以其框架的成熟度绝对是第一的。在Google的白皮书上写道,Google内部有大量的产品几乎都用到了TensorFlow,如搜索排序、语音识别、谷歌相册和自然语言处理等。有这么多在该框架上的成功案例,先不说能够提供多少经验技巧,至少可以确保学习者在研究的道路上,遇到挫折时不会怀疑是框架的问题。
4、超强的运算性能
虽然TensorFlow在大型计算机集群的并行处理中,运算性能仅略低于CNTK,但是,其在个人机器使用场景下,会根据机器的配置自动选择CPU或GPU来运算,这方面做得更加友好与智能化。
(二)Caffe
当年深度学习的老大。最初是一个强大的图像分类框架,是最容易测试评估性能的标准深度学习框架,并且提供很多预训练模型,尤其该模型的复用价值在其他框架的学习中都会出现,大大提升了现有模型的训练时间。但是现在的Caffe似乎停滞不前,没有更新。尽管Caffe又重新崛起,从架构上看更像是TensorFlow,而且与原来的Caffe也不在一个工程里,可以独立成一个框架来看待,与原Caffe关系不大。
(三)CNTK
CNTK是一个微软开发的深度学习软件包,以速度快著称,有其独有的神经网络配置语言Brain Script,大大降低了学习门槛。有微软作为后盾,CNTK成为了最具有潜力与Tensor Flow争夺天下的框架。但目前其成熟度要比TensorFlow差太多,即便是发行的版本也会有大大小小的bug。与其他框架一样,CNTK具有文档资料不足的特点。但其与Visual Studio的天生耦合,以及其特定的MS编程风格,使得熟悉Visual Studio工具的小伙伴们从代码角度极易上手。另外,CNTK目前还不支持Mac操作系统。
希望以上内容对您有所帮助,点击这里领取我们线上学习免费课程。更多Python干货可以持续关注浙江优就业官方网站以及浙江优就业公众号具体了解哦。如果大家有时间的话,最好是能到我们线下基地进行实地考察。
浙江优就业教育:http://zhejiang.ujiuye.com/
相关推荐:
>>本文地址:http://zhejiang.ujiuye.com/cjwt/32038.html
声明:本站稿件版权均属中公教育优就业所有,未经许可不得擅自转载。
1 您的年龄
2 您的学历
3 您更想做哪个方向的工作?
Java
Ui
大前端
软件测试
Python
PMP
软考